- What is Size-Biased Data?
- Scientific Background for Mitochondria
- Goals for this project
- How the sampling process caused size-biased data?
- Investigate Possible Estimators with simulation study
- Use the best ones on real data
- Conclusion
- Future Works
5/17/2017
(Measuring the resemblance of a mitochondrion to a circle. The range of circularity is between 0 and 1. 1 means a perfect circle.)
(If \(AR \leq 2\), it is considered short; if \(2 < AR \leq 4\), intermediate; if \(AR > 4\), long.)
\[ \begin{align*} {H}_{0} &: {\mu}_{{i}_{P}} = {\mu}_{{i}_{M}} = {\mu}_{{i}_{D}}\\ {H}_{A} &: \text{At least one} \: {\mu}_{{i}_{j}} \neq {\mu}_{{i}_{k}} \end{align*} \]
\[ \begin{align*} {H}_{0} &: {\mu}_{{i}_{j}} = {\mu}_{{i}_{k}} \\ {H}_{A} &: {\mu}_{{i}_{j}} \neq {\mu}_{{i}_{k}} \\ \end{align*} \] \[ \begin{align*} i &= \left \{ \text{Area, Perimeter, Circularity, Aspect Ratio} \right \} \\ j,k & = \left \{ \text{P, M, D} \right \} \end{align*} \]
photo from http://www.desicomments.com/desi/thank-you/
photo from http://www.bookcovercafe.com/independent-publishing-q-and-a-series-01/